TMUA Practice - Trigonometry

1. What is the largest solution for x in the range $0 \le x < 2\pi$ for the following equation:

$$2\sin(2x - \frac{\pi}{3}) + 1 = 0 \qquad -\frac{\pi}{3} \leqslant 2x - \frac{\pi}{3} \leqslant \frac{\pi}{3}$$

$$-\frac{\pi}{3} \leqslant 2x - \frac{\pi}{3} \leqslant \frac{\pi}{3}$$

$$A \frac{\pi}{12}$$

$$B \frac{3\pi}{4}$$

$$C = \frac{13\pi}{12}$$

$$\bigcirc \frac{7\pi}{4}$$

A
$$\frac{\pi}{12}$$
 B $\frac{3\pi}{4}$ C $\frac{13\pi}{12}$ D $\frac{7\pi}{4}$ E $\frac{23\pi}{12}$

$$\sin\left(2x-\frac{\pi}{3}\right)=-\frac{1}{2}$$

$$2\alpha - \frac{\pi}{3} = \frac{2\pi}{6} + \frac{\pi}{6} + \frac{19\pi}{6} + \frac{1}{6}$$

$$\sin\left(2x - \frac{\pi}{3}\right) = \frac{1}{2}$$
 largest
$$2x = \frac{19\pi}{6} + \frac{\pi}{3} = \frac{21\pi}{6} = \frac{\pi}{2}$$
$$2x - \frac{\pi}{3} = \frac{\pi}{6} = \frac{\pi}{6}$$
 and of range

2. What is the sum of the solutions for x in the range $0 \le x < \pi$ for the following equation:

$$tan(2x - \pi) = 1$$

A
$$\frac{3}{8}$$

$$B = \frac{5\pi}{8}$$

$$\bigcirc \frac{3\pi}{4}$$

$$D = \frac{5\pi}{4}$$

$$E = \frac{7\pi}{4}$$

$$2x - \pi = \frac{3\pi}{4} \quad \frac{\pi}{4}$$

$$2x = \pi \quad \text{Sin}$$

$$4 \quad 7$$

$$\alpha = \frac{8}{1} \frac{8}{51}$$

3. How many solutions does the following equation have in the range $0 \le x < 2\pi$

$$2sin(cosx) = \sqrt{2}$$

$$C$$
 2

infinitely many

Solve
$$2 \sin A = \sqrt{2}$$
 for $-1 \le A < 1$

$$\sin A = \frac{\Gamma_2}{2}$$

 $\frac{\pi}{4} < 1$ 1 solution $A = \frac{\pi}{4}$

1 solution
$$A = \frac{\pi}{4}$$

 $\cos x = \frac{\pi}{4}$ has 2 solutions $0 \le x < 2\pi$

$$2\sqrt{2}\sin 3x - \tan 3x = 3$$

$$\sqrt{2}\tan 3x + 4\sin 3x = \sqrt{2}$$

$$4S + \sqrt{2} + \sqrt{2} = \sqrt{2}$$

$$5\sqrt{2}$$

where $0 \le x \le 180$.

2/2 S + T = 1 2

Find the sum of the possible values of x

$$0 + 2$$
 $4\sqrt{2}S = 4$ $S = \frac{\sqrt{2}}{2}$ $\sin 3x = \frac{1}{2}\sqrt{2}$
 $\sqrt{1-2}$ $-27 = 2$ $T = -1$ $\tan 3x = -1$

$$\sin 3x = \frac{1}{2} \sqrt{2}$$

$$(1)-(2)$$
 $-27=2$ $7=-1$

$$\sin 3x = \frac{1}{2}\sqrt{2}$$
: $3x = 45, 135, 405, 495$

540

E

$$\tan 3x = -1$$
: $3x = 135,495$

$$sin\left(x + \frac{\pi}{3}\right) \ge \frac{1}{2}$$

The fraction of the interval $0 \le x \le 2\pi$ for which this is true, is:

$$\frac{\pi}{3} \leq x + \frac{\pi}{3} \leq \frac{7\pi}{3}$$

$$A \frac{1}{6}$$

$$B \frac{1}{4}$$

$$\bigcirc \frac{1}{3}$$

$$D \frac{5}{12}$$

$$E \frac{1}{2}$$

A $\frac{1}{6}$ B $\frac{1}{4}$ $\bigcirc \frac{1}{3}$ D $\frac{5}{12}$ E $\frac{1}{2}$ $\bigcirc \mathbb{R}$ *Same fraction as $y = \sin x$.

$$Sin\left(X + \frac{\pi}{3}\right) = \frac{1}{2}$$

$$X + \frac{\pi}{3} = \left(\frac{\pi}{6}\right) \cdot \frac{5\pi}{6} \cdot \frac{13\pi}{6}$$

$$X = \frac{3\pi}{6} \cdot \frac{11\pi}{6}$$

$$X = \frac{3\pi}{6} \cdot \frac{11\pi}{6}$$

$$X = \frac{\pi}{2} \cdot \frac{11\pi}{6}$$

$$X = \frac{\pi}{2$$

$$\frac{2\pi/3}{2\pi} = \frac{1}{3}$$

Find the greatest value of the function $f(x) = (3sin^2(2x - 5) - 7)^2$ 6.

A 16

B 25

C 36

D) 49

E 100

7. Find the maximum value of $3(4^{sinx}) - 10(2^{sinx}) + 9$

$$A \frac{2}{3}$$

$$3y^{2} - 10y + 9$$

$$3(y^{2} - \frac{10}{3}y) + 9$$

$$3[(y - \frac{5}{3})^{2} - \frac{25}{9}] + 9$$

$$3[(y-\frac{5}{3})^2-\frac{25}{9}]+9$$

 $3(y-\frac{5}{3})^2-\frac{25}{3}+\frac{27}{3}$

$$3(y-\frac{5}{3})^{2}-\frac{25}{3}+\frac{27}{3}$$

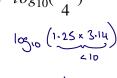
$$3(y-\frac{5}{3})^{2}+\frac{2}{3}$$

$$\frac{3}{4} - 5 + 7 = \frac{11}{4}$$
or
$$3\left(\frac{1}{2} - \frac{5}{3}\right)^2 + \frac{2}{3} = 3\left(-\frac{7}{6}\right)^2 + \frac{2}{3}$$

$$= 3\left(\frac{49}{36}\right) + \frac{8}{12} = \frac{57}{12} = \frac{19}{4}$$

8. Which of the following is the largest?

A
$$tan(\frac{5\pi}{4})$$



B
$$sin^2(\frac{3\pi}{4})$$

$$\sin \frac{3\pi}{4} < 1
 \log_{10} \left(\frac{1.25 \times 3.14}{2.10}\right)
 \log_{2} \left(\frac{1}{4} \times 9...\right)

 > 2
 > 1
 > A$$

C
$$log_{10}(\frac{5\pi}{4})$$

$$A \ tan(\frac{5\pi}{4}) \qquad \qquad B \ sin^2(\frac{3\pi}{4}) \qquad \qquad C \ log_{10}(\frac{5\pi}{4}) \qquad \qquad \widehat{\bigcirc{D}} \ log_2(\frac{3\pi}{4})$$

9. A triangle ABC is drawn with AC = 5cm and BC = 11cm and the angle at B equal to a specified angle θ .

Of the two possible triangles that could be drawn, the larger triangle has double the area of the smaller one.

What is the value of $cos\theta$?

A
$$\frac{10}{11}$$

$$C = \frac{\sqrt{13}}{11}$$

D
$$\frac{\sqrt{6}}{5}$$

E
$$\frac{3\sqrt{6}}{25}$$

Area =
$$\frac{1}{2}AB \times 11 \times \sin \theta$$

Area $A^{2}BC = 2 \times Area A^{1}B$

$$\cos \theta = \frac{3x}{11}$$

$$= 3\sqrt{12}$$

- 10. A triangle ABC is to be drawn with the following measurements.
 - AB = 10cm and angle BAC = 60°.

Which of the following statements is/are true?

- I No such triangle can be drawn if BC = 7cm
- II Exactly one distinct triangle can be drawn if $BC = 5\sqrt{3}cm$
- III Exactly two distinct triangles can be drawn if BC = 12cm
- A none of them
- B I only
- C II only
- D III only
- E I and II only
 - F II and III only
 - G I and III only
 - H I, II and III

- MB = 10 Stab0 = 5/3 = 8.5
 - I 7 < 5/3 true
 - Ti me
- III 12 > AB false only 1 hiangle